

Product Code	307-180
Colour	White
Preparation	900 ml deionised water to heat 40°C and add the rhodium during continuous stirring
Tanks	Polypropylene or Teflon
Anodes	Platinised Titanium
Heaters	Porcelain or PTFE
Agitation	Solution and/or work movement is recommended

USAGE: Heat the mixture we preapared for use to 40°C. Dipping the platinum coated titanium (+) anode into it. Put the material you want to plate into the solution with the help of a current-conducting (-) hanger (Platinex hanger is recommended). Perform the plating process by immersing it and applying 4.0V voltage and moving it for 30 seconds. Provides 0.2 micron coating with 40 second of application.

IMPORTANT NOTE: The more accurate the pre-treatment processes before plating, the better the plating quality will be. Please contact our company regarding the pre-treatment preparation.

OPERATING CONDITIONS

Rhodium Content:	2.0 g/l (1.7 – 2.3 g/l)
Sulfuric Acid:	35 g/l (32 – 40 g/l)
рН:	1.0
Temperature:	40°C ± 5°C
Voltage:	4.0 – 4.5V
Anode-To-Cathode Ratio:	2 : 1 or higher
Anode Material:	Platinised Titanium
Plating Efficiency:	2 - 3 mg/A.min
Deposition Rate:	~ 0.2 μ 40 sec
Plating Time:	30 sec (20 – 60 sec)

DEPOSITION CHA	RACTERISTICS
Purity:	99.9 %
Hardness:	900 HV
Density:	12 g/cm ³

Consumed 4000 Amps Per Minute

• 10 gr. RHODIUM SILVERSHINE REPLENISHER (50 g/l)

SOLUTION MAINTENANCE

The Rhodium metal content should be maintained at the recommended concentration (2.0 g/l) with periodic additions of RHODIUM SILVERSHINE Replenisher containing 50 g/l Rhodium metal.

RHODIUM SILVERSHINE Replenisher is supplied in units of 100 ml. The Replenisher contains all necessary agents to be added every 4'000 A.min.

1. TANKS

Tanks should be made from Polypropylene or Teflon. Prior to use, the tank should be leached with a 5 % Sodium Hydroxide solution for several hours and subsequently rinsed in several changes of water and with Sulfuric Acid.

2. HEATERS

Heaters should be made from Porcelain or PTFE. The temperature of the bath should be maintained at 40°C <u>+</u>5°C.

3. FILTRATION

Filtration of the solution is not necessary.

4. AGITATION

A moderate agitation is recommended. Work movement should be 7 m/min.

5. ANODES

Platinised titanium anodes should be used with this solution. The area should be sufficient to provide an anodeto-cathode ratio of 2 : 1 or better.

D TROUBLE SHOOTING

CONSTITUENT	LOW	HIGH
Rhodium	Low Plating Efficiency	Hazy Deposits
рН	Low Plating Efficiency	Mat Deposits and Precipitation of The Solution
Temperature	Low Plating Efficiency and Dark Deposit	Burning
Current Density	Low Plating Efficiency and Dark Deposits	Burning
Sulfuric Acid	Hazy Deposits	Low Plating Efficiency but Bright Deposits Low Throwing Power